927V0MJku1OcBLTuD7lkELe7Mk4OHfuDB8LuA1nI

Report Abuse

64y6kMGBSVhmzQfbQP8oc9bYR1c2g7asOs4JOlci

Search This Blog

Science Projects

100k Online Courses

Experts to Help You Cross Every Hurdle

Experts to Help You Cross Every Hurdle

lacinia intellegebat tantas vocent explicari patrioque meliore nisi quo accumsan iisque maecenas urbanitas ius legere augue movet

Get help
Experts to Help You Cross Every Hurdle
English Subject

Lifetime Access

25K+ Students are in One Place

Get Top Courses / 40% Off

Get Top Courses / 40% Off
Register for our premium course and grasp 40% offer.
Math Subject

Expert Instruction

Recent

E - Learning

lacinia intellegebat tantas vocent explicari patrioque meliore nisi quo accumsan iisque maecenas urbanitas ius legere augue movet

PENGATURAN

The Worlds Largest Selection of Courses and Books

The Worlds Largest Selection of Courses and Books

Let's Grow Your

Let's Grow Your
Education Level up
with E-learning

Get Start
Let's Grow Your

Become a world best E Plateform

Become a world best E Plateform
Learn online courses in easy way with notes

Categories

Middle

Lorem lorem ipsum dolor sit amet, consectetur adipiscing elit, sed tempor and vitality, so that the labor and sorrow, some important things to do eiusmod. For now passes from soccer.

Links

Postingan Populer

Bookmark

Kerala Plus One Maths Notes Chapter 1 Sets

I. Sets

Set is a well-defined collection of distinct objects.
Examples of sets.

  • N: Set of Natural numbers.
  • Z: Set of Integers.
  • Q: Set of Rational numbers.
  • R: Set of Real numbers.
  • Z+: Set of Positive Integers numbers.
  • Q+: Set of Positive Rational numbers.
  • R+: Set of Positive Real numbers.

Representation of Sets:

  1. Roster Form: All elements are listed, are separated by commas, and closed using brackets.
  2. Set-builder Form: All elements of a set possess a single common property which is not possessed by any elements outside the set.
  3. Venn Diagram: Here sets are represented by diagrams. These diagrams consist of rectangles and closed curves usually circles. The universal et is represented by a rectangle and its subsets by circles.

II. Types of Sets:

Empty set: Set contains no element, φ or {}.

Singleton set: Set containing one element.

Finite set: Set containing a definite number of elements.

Infinite set: Set containing an infinite number of elements..

Equivalent set: Sets containing an equal number of elements.

Equal set: Sets containing identical elements.

Subset: If every element of A is an element of B, denoted by A ⊂ B. For any set A, the set A and Empty set is a subset of A. If a set A has n elements, then it has 2n subsets.

Superset: B is a superset if A is a subset of B, denoted by B ⊃ A.

Proper Subset: If A ⊂ B and A ≠ B.

Power set: The set of all subsets of a set A, denoted by P(A). If n(A) = n, then n(P(A)) = 2n

Universal set: The superset of all subsets under discussion.

Intervals as subset of R:

  1. [a, b] = {x : a ≤ x ≤ b}, closed interval.
  2. (a, b] = {x : a < x ≤ b]
  3. [a, b) = {x : a ≤ x < b}
  4. (a, b) = {x : a < x < b}, open interval.

III. Operations on Sets

Union of Sets: The union of A and B is the set which consists of all elements of A and all elements of B except the common elements. In symbol we write as A ∪ B = {x : x ∈ A or x ∈ B}.
Venn diagram representation:
Plus One Maths Notes Chapter 1 Sets 1
Properties:

  1. A ∪ B = B ∪ A, Commutative.
  2. (A ∪ B) ∪ C = A ∪ (B ∪ C), Associative
  3. A ∪ φ = A, φ is the identity.
  4. A ∪ A = A
  5. U ∪ A = U

Intersection of Sets: The intersection of A and B is the set of common elements of both A and B.
In symbol, we write as A ∩ B = {x : x ∈ A and x ∈B}.
Venn diagram representation:
Plus One Maths Notes Chapter 1 Sets 2
Properties:

  1. A ∩ B = B ∩ A, Commutative.
  2. (A ∩ B) ∩ C = A ∩ (B ∩ C), Associative
  3. A ∩φ = φ
  4. A ∩ A = A
  5. U ∩ A = A
  6. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
  7. n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
  8. If A and B are disjoint, then n(A ∪ B) = n(A) + n(B)
  9. n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(C ∩ A) + n(A ∩ B ∩ C)

Difference of Sets: The difference of the sets A and B in this order is the set of elements which belongs to A but not to B, denoted by A – B = {x : x ∈ A and x ∉ B}
Venn diagram representation:
Plus One Maths Notes Chapter 1 Sets 3
Property: A – B ≠ B – A

Complement of a Set: The complement of a set A is the set of all elements of U which are not in A, denoted by
A’ = {x : x ∈ U and x ∉ A}
Venn diagram representation:
Plus One Maths Notes Chapter 1 Sets 4
Properties:

  1. A’ ∪ A = U, Commutative.
  2. A’ ∩ A = φ, Associative
  3. (A ∩ B)’ = A’ ∪ B’
  4. (A ∪ B)’ = A’ ∩ B’
  5. U’ = φ
  6. φ’ = U
  7. (A)’ = A
  8. A – B = A ∩ B’
  9. n(A – B) = n(A ∩ B’)
  10. n(A) = n(A ∩ B’) + n(A ∩ B)
  11. n(A ∪ B) = n(A ∩ B’) + n(A’ ∩ B) + n(A ∩ B)

We hope the Plus One Maths Notes Chapter 1 Sets help you. If you have any query regarding Kerala Plus One Maths Notes Chapter 1 Sets, drop a comment below and we will get back to you at the earliest.

Post a Comment

Post a Comment